医療ロボティクス分野のトップジャーナルである International Journal of Computer Assisted Radiology and Surgery (IJCARS)誌に矢ケ崎詞穂さんらの投稿論文がオンラインファーストで掲載されました。日本大学の小川眞広先生、松本直樹先生、横浜市大の沼田先生らとの共同研究プロジェクトの成果であり、われわれが推進する能動的に運動(変位・変形・回転)する臓器内の患部を抽出・追従・モニタリングする研究・開発に関するものです。ひきつづき大変お世話になりますが、ご助言・ご指導・お力添えをたまわりますようどうぞよろしくお願いもうしあげます。
Shiho Yagasaki, Norihiro Koizumi, Yu Nishiyama, Ryosuke Kondo, Tsubasa Imaizumi, Naoki Matsumoto, Masahiro Ogawa, Kazushi Numata, "Estimating 3-dimensional liver motion using deep learning and 2-dimensional ultrasound images," International Journal of Computer Assisted Radiology and Surgery (IJCARS), 2020. https://doi.org/10.1007/s11548-020-02265-1 IF=2.5
本論文では2次元の超音波動画像からこれまで困難であった超音波画像スキャン面に直交する方向を含む3次元的な臓器(肝臓)の運動を推定するBCDU-RegNetという新規の手法を提案しています。 本手法は深層学習を援用しており、セグメンテーションを行う部分ネットワークと、臓器(肝臓)の運動推定を行う部分ネットワークから構成されています。 今回、セグメンテーションを行う部分ネットワークにAzadらによるBCDU-Netという高精度な手法を適用することで、既存のU-Netによるセグメンテーションに比して劇的な精度の改善がみられました。また、臓器(肝臓)の運動推定を行う部分ネットワークについてはPrevostらの手法を基盤として構築しました。本論文ではセグメンテーション精度の劇的な改善が臓器(肝臓)の運動推定精度の向上に資することについても実証しています。